Forest Type Classification Improvement Using Spatial Predictive Distribution Models
نویسنده
چکیده
The last experiences showed that spectral data have not sufficient to classify forest types in the mountainous area. In order to clear abilities of spatial models to classify forest types and improve results, an investigation was planned in a case study in the northern forests of Iran by ETM+ data. The spatial models based on aspect, elevation, incorporated aspect-height and homogenous units constructed for each type individually. Probability occurrence rates of types were extracted in the each class. Classification was accomplished with the best spectral data sets by maximum likelihood classifier using only spectral data and with spatial models separately. The accuracy of results was assessed with a sample ground truth map. The results showed that spatial models could improve considerably results in compare with only spectral data (14%). This study exposed that spatial models based on the homogenous units in compare to other models could better improve classification.
منابع مشابه
Comparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملComparing Different Modeling Techniques for Predicting Presence-absence of Some Dominant Plant Species in Mountain Rangelands, Mazandaran Province
In applied studies, the investigation of the relationship between a plant species and environmental variables is essential to manage ecological problems and rangeland ecosystems. This research was conducted in summer 2016. The aim of this study was to compare the predictive power of a number of Species Distribution Models (SDMs) and to evaluate the importance of a range of environmental variabl...
متن کاملPrediction of potential habitat distribution of Artemisia sieberi Besser using data-driven methods in Poshtkouh rangelands of Yazd province
The present study aimed to model potential habitat distribution of A. sieberi, and its ecological requirements using generalized additive model (GAM) and classification and regression tree (CART) in in the Poshtkouh rangelands of Yazd province. For this purpose, pure habitats of the species was delineated and the species presence data was recorded by the systematic-randomize sampling method. Us...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملLand use changes detection and spatial distribution using digital and satellite data, case study: Farim drainage basin, Northern of Iran
Land use change may influence many natural phenomena and ecological processes, including runoff, soil erosion, sedimentation and soil conditions. Decreasing of forest area in the North of Iran is one of the critical problems in recent years. The aims of this study are to detect land use changes between 1967 to 2002 using satellite images of Land Sat 7 ETM+ (2002), aerial photos and digital topo...
متن کامل